На правах рукописи

Слободенюк Владимир Владимирович

РОЛЬ ХЛАМИДИЙ В СПОНТАННОЙ ИНФЕКЦИОННОЙ ПАТОЛОГИИ ОБЕЗЬЯН

03.02.03 – микробиология

Автореферат диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Учреждении Российской Академии Медицинских Наук Научно-исследовательском Институте Медицинской Приматологии Российской Академии Медицинских Наук.

Научные	руководители:
---------	---------------

доктор медицинских наук, профессор

Этери Капитоновна Джикидзе

Заслуженный деятель науки РФ, доктор медицинских наук, профессор

Станислав Степанович Афанасьев

Официальные оппоненты:

доктор медицинских наук,

профессор Сергей Юрьевич Пчелинцев

доктор медицинских наук,

профессор Анатолий Сергеевич Быков

Ведущая организация:

Государственное образовательное учреждение высшего профессионального образования «Российский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию»

С диссертацией можно ознакомиться в библиотеке ФГУН "Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.

Автореферат разослан «__»_____2010 года.

Ученый секретарь диссертационного совета, доктор медицинских наук

О.Ю. Борисова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Инфекционные заболевания, вызываемые облигатными внутриклеточными микроорганизмами семейства Chlamydiaceae, имеют широкое распространение и в нашей стране и за рубежом (Гранитов В.М., 2002; Дмитриев Г.А., 2003; Лобзин Ю.В. с соавт., 2003). Среди возбудителей хламидийных инфекций животных и человека особое значение для медицины представляют хламидии двух родов Chlamydia и Chlamydophila: вид Chlamydia trachomatis, вызывающий урогенитальные заболевания, патологию беременности и родов, некоторые формы артрита, трахому, лимфогранулему венерум, патологию органов дыхания, офтальмию новорожденных, и вид Chlamydophila pneumoniae (биовар TWAR), являющийся возбудителем респираторных заболеваний, а также играющий роль в патологии сердечно-сосудистой системы и головного мозга (Гранитов В.М., 2002; Козлова В.И. с соавт., 2003; Anttila T. et al., 2001; Gaydos C.A., 2001). В связи с чем, в настоящее время проводится детальное изучение жизненного цикла хламидий, фенотипических признаков, особенностей структуры генома штаммов хламидий, а также их филогенетической связи (Carlson J.H. et al., 2008; Fryer R.H. et al., 1997; Suchland R.J. et al. 2000). Востребованным становится использование обезьян, по своим характеристикам близким к организму человека, для экспериментального изучения хламидиоза. Известны работы по экспериментальному заражению обезьян хламидиями, выделенными от человека; доказана высокая восприимчивость данных животных к хламидиям (Mahony J. B. et al., 1993; Wesley C. Van Voorhis et al., 1997). Выявление особенностей течения, распространения хламидийной инфекции в популяции обезьян, роли Chlamydia trachomatis и Chlamydophila pneumoniae в патологии урогенитального тракта и органов дыхания, унификация методов детекции и идентификации возбудителей, изучение фенотипических признаков, филогенетического положения в семействе Chlamydiaceae штаммов хламидий, выделенных от обезьян, представляют собой научный интерес и могут служить теоретической и практической базой для понимания патогенеза клинических проявлений и совершенствования диагностики хламидийной инфекции у обезьян и человека.

Цель исследования

Определение роли *Chlamydia trachomatis* и *Chlamydophila pneumoniae* в спонтанной инфекционной патологии обезьян и установление их филогенетического положения в семействе *Chlamydiaceae* штаммов, вызывающих патологический процесс у обезьян.

Задачи исследования

- 1. Определить естественное распространение *Chlamydia trachomatis* и *Chlamydophila pneumoniae* у низших обезьян разных видов с патологией урогенитального тракта, органов дыхания и органов зрения.
- 2. Разработать способ мультиплексной ПЦР диагностики хламидийной инфекции обезьян, вызванной видом *Chlamydophila pneumoniae* и *Chlamydia trachomatis*, и способ мультиплексной ПЦР диагностики плазмидных и бесплазмидных штаммов вида *Chlamydia trachomatis*.

- 3. Выделить штаммы хламидий от обезьян и изучить их фенотипические особенности в культуре клеток.
- 4. Провести молекулярно-генетическое генотипирование штаммов *Chlamydia trachomatis*, выделенных от обезьян, методами ПЦР и ПЦР-ПДРФ-анализа.
- 5. Провести молекулярно-генетическое исследование детерминант антибиотикорезистентности методом ПЦР штаммов хламидий, выделенных от обезьян.
- 6. Провести молекулярно-генетические исследования штаммов хламидий, выделенных от обезьян, для установления их филогенетического положения в семействе *Chlamydiaceae*.

Научная новизна

Выявлено естественное инфицирование штаммами *Ch. trachomatis* и *Chl. pneumoniae* низших обезьян разных видов с патологией органов репродуктивного тракта, органов дыхания и органов зрения.

Впервые разработан способ мультиплексной ПЦР диагностики хламидийной инфекции обезьян, вызванной видом *Chlamydophila pneumoniae* и *Chlamydia trachomatis*, и способ мультиплексной ПЦР диагностики плазмидных и бесплазмидных штаммов вида *Chlamydia trachomatis*.

Впервые изучены фенотипические особенности штаммов *Chl. pneumoniae* и *Ch. trachomatis*, выделенных от обезьян при культивировании их в культуре клеток.

Методами ПЦР и ПЦР-ПДРФ-анализа впервые выявлена принадлежность к генотипам штаммов *Chlamydia trachomatis*, выделенных от обезьян, что позволяет определить патогенетический потенциал течения хламидиоза.

Впервые проведено молекулярно-генетическое исследование детерминант антибиотикорезистентности штаммов *Chl.pneumoniae* и *Ch. trachomatis*, выделенных от обезьян, что позволяет конкретизировать схему лечения хламидиоза.

Впервые установлено филогенетическое положение штаммов *Chl. pneumoniae* и *Ch. trachomatis*, выделенных от обезьян, в семействе *Chlamydiaceae*, а также родство данных изолятов с подобными штаммами, выделенными от человека, в сопоставимости со штаммами, нуклеотидные последовательности которых представлены в электронной базе данных GenBank.

Практическая значимость

Предложены модифицированные лабораторные методы (цитологический, серологический, культуральный, молекулярно-генетический, биоинформационный анализ) для комплексной оценки инфекционного процесса при спонтанном хламидиозе обезьян. Спонтанная хламидийная инфекция низших обезьян может рассматриваться как лабораторная модель, перспективная для совершенствования верификации возбудителя, лечебных и профилактических схем лечения.

На разработаный способ мультиплексной ПЦР диагностики хламидийной инфекции обезьян, вызванной видом *Chlamydophila pneumoniae* и *Chlamydia trachomatis*, и способ мультиплексной ПЦР диагностики плазмидных и бесплазмидных штаммов вида *Chlamydia trachomatis*, получен Патент РФ «Способ

диагностики хламидийной инфекции человека или обезьян и набор для его осуществления» № 2385946, зарегистрирован 10.04.2010, и Патент РФ «Способ прогнозирования манифестной или стертой формы хламидийной инфекции человека или обезьян и набор для его осуществления» № 2385945, зарегистрирован 10.04.2010.

Внедрение результатов работы в практику

Результаты исследований и разработок внедрены в научных подразделениях Научно-исследовательского института медицинской приматологии Российской академии медицинских наук и используются в научной работе лаборатории клинической микробиологии и биотехнологии ФГУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора.

Основные положения, выносимые на защиту:

- 1. Доказана эпизоотологическая значимость хламидиозов в спонтанной инфекционной патологии низших обезьян.
- 2. Впервые выявлена связь генотипических и фенотипических свойств возбудителей хламидиозов с патогенетическими механизмами и особенностями клинического течения хламидийной инфекции у низших обезьян.
- 3. Установлено филогенетическое положение штаммов хламидий, выделенных от обезьян, в семействе *Chlamydiaceae* и подтверждено их родство со штаммами, выделенными от человека.

Апробация работы

Диссертация апробирована на заседании Ученого совета НИИ Медицинской приматологии РАМН, протокол № 4 от 17 марта 2010 г.

Результаты исследований доложены на Научно-практической конференции «Идеи Пастера в борьбе с инфекциями» (Санкт-Петербург, 2-4 июня 2008 г.); XV Российском Национальном Конгрессе «Человек и лекарство» (Москва, 14-18 апреля 2008 г.); XVI Российском Национальном Конгрессе «Человек и лекарство» (Москва, 6-10 апреля 2009 г.); XVII Российском Национальном Конгрессе «Человек и лекарство» (Москва, 12-16 апреля 2010 г.); Научнопрактической конференции молодых ученых и специалистов исследовательских учреждений Роспотребнадзора «Биологическая безопасность в современном мире» (Оболенск, 21-22 апреля 2009 г.); Международной конференции «Развитие научных исследований и надзор за инфекционными заболеваниями» (Санкт-Петербург, 18-20 мая 2010 г.); II Ежегодном Всероссийском Конгрессе по инфекционным болезням (Москва, 29-31 марта 2010 г.), Тhe 3rd Congress of European Microbiologists "Microbes and Man - interdependence and future challenges" (Gothenburg, Sweden, June 28-July 2, 2009).

Связь темы исследования с планом научной работы учреждения

Данное исследование представляет собой раздел темы НИР НИИ Медицинской приматологии РАМН «Изучение распространенности и критериев диагностики патологии мертворожденных и новорожденных обезьян, обусловленных хламидиями и микоплазмами». Рег. № 0120.0 801826.

Публикации

По материалам диссертации опубликовано 16 печатных работ, в том числе 5 - в журналах, рекомендованных ВАК Российской Федерации; 1 − в периодическом издании; 8 - в сборниках материалов конференций; два патента на изобретение РФ № 2385945 от 10.04.2010 и № 2385946 от 10.04.2010.

Объем и структура диссертации

Диссертация изложена на 134 страницах машинописного текста и состоит из введения, обзора литературы, главы материалы и методы исследования, главы результаты собственных исследований (состоит из трех подразделов), обсуждения полученных результатов и выводов. Список литературы включает 192 источника, из которых 49 опубликовано в отечественной и 143 в зарубежной литературе. Диссертация иллюстрирована 17 рисунками и 14 таблицами.

СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследований

Проведено клинико - лабораторное обследование 269 обезьян на базе Адлерского питомника обезьян НИИ Медицинской приматологии РАМН за период 2006-2009 гг. на установление возможности распространения хламидийной спонтанной инфекционной патологии.

Объектом исследования служили низшие обезьяны обоего пола, разного вида и возраста (от 0 дней до 27 лет): африканские обезьяны – павианы гамадрилы, павианы анубисы, зеленые мартышки, африканский макак магот; азиатские – макаки яванские, макаки резусы, макаки лапундеры; южноамериканская широконосая обезьяна - капуцин белоплечий. Обезьяны были разделены на группы: группу I составили 114 клинически здоровых обезьян (без клинических проявлений хламидийной патологии); группу ІІ составили 48 больных животных с хламидийной патологией (УГТ, глаз) с выраженной клиникой течения заболевания (аборты, эндометриты, цервициты, у самцов – уретриты, конъюнктивиты и кератоконъюнктивиты, угнетённое состояние или повышенная возбудимость); группу III составили 45 больных животных с хламидийной патологией (УГТ и органов дыхания) без выраженной клиники заболевания (в анамнезе отмечались выкидыши, бесплодие, острые случаи клинических проявлений); группу IV составили 62 погибших взрослых животные и детеныши с различной хламидийной патологией. Все обезьяны принадлежат к 4-5 поколению, родившихся в питомнике, содержатся в вольерах и клетках с центральным отоплением и водоснабжением, получают сбалансированный корм.

Образцы клинического материала. Клиническим материалом от живых животных служили мазки-соскобы из цервикального канала и уретры у самок и уретры у самцов, с конъюнктивы глаза. Для выделения возбудителя в культуре клеток, соскобный материал помещали в транспортную среду (Метельская В.А. и др., 2008; Савичева А.М. и др., 2004). Для молекулярно-генетических исследований содержимое зондов тщательно суспендировали в забуференном физиологическом растворе. Для серологических исследований кровь брали венепункцией, натощак. Доставка материала осуществлялась в лабораторию в течение 1-2-х часов. Образцы цельной крови инкубировали 1 час при температуре

37 °C, затем центрифугировали 10 мин при 1500 об/мин. Сыворотку переносили в отдельную пробирку и хранили при минус 20 °C не более двух недель. От погибших животных материалом исследования служили соскобы из УГТ, задней стенке глотки, паренхиматозные органы (легкое, печень, селезенка, почка), от детенышей использовали мазки-соскобы из задней стенки глотки, конъюнктивы глаз и паренхиматозные органы. Материал также помещался в транспортную среду (для исследования в культуре клеток) или в забуференный физиоло-"Эппендорф" гический раствор В пробирки типа (для молекулярногенетических исследований).

Штаммы микроорганизмов. В качестве положительных контрольных образцов выступали референс штаммы *Chlamydophila pneumoniae* — «В» и *Chlamydia trachomatis* — «Бурхан», полученные из Государственной Коллекции Вирусов (ГКВ) ГУ НИИ Вирусологии им. Д.И. Ивановского РАМН. Штаммы *Ch. trachomatis* и *Chl. pneumoniae*, полученные от обезьян сохранялись в жидком азоте для дальнейшего изучения свойств.

Используемые культуры клеток, среды. Забуференный физиологический раствор 10-кратный: 9 частей 1,5 M NaCI и 1 часть 1,5 M фосфатного буфера. 1,5 M NaCI: 87,7 г NaCI в 1 л раствора; 1,5 M фосфатный буфер: 29,6 мл раствора KH_2PO_4 (90,73 г/л), 70,4 мл раствора $Na_2HPO_4 \cdot 2H_2O$ (118,7 г/л), pH 7,2-7,4.

Сахарозо-фосфатный буфер: сахароза — 68,46 г, K_2HPO_4 — 2,088 г, KH_2PO_4 — 1,088 г, дистиллированная вода — 1 литр; pH 7,0-7,2.

В качестве транспортной среды использовали сахарозо-фосфатный буфер, 10% эмбриональной телячьей сыворотки, гентамицин 20 мкг/мл, ванкомицин 100 мкг/мл, амфотерицин В 2 мкг/мл (среда готовилась в лаборатории).

Среда для формирования монослоя культуры клеток: среда DMEM с глютамином и с 25 мМ HEPES, 10% эмбриональной телячьей сыворотки от общего объема, гентамицин 20 мкг/мл.

В качестве изолирующей среды хламидий в культуре клеток применялась среда DMEM с глютамином и с 25 мМ HEPES, 10% эмбриональной телячьей сыворотки от общего объема и 40% раствор глюкозы (1,25 мл на 100 мл среды), в качестве цитостатика использовали циклогексимид (2,0 мкг/мл).

В работе использовались 3 перевиваемые клеточные линии McCoy, Vero, Hela, полученные из музея культур клеток Института цитологии Российской Академии Наук (г. Санкт-Петербург).

Цитологический метод. Забранный материал из УГТ, задней стенки глотки, с конъюнктивы в виде мазков-соскобов, а также мазков-отпечатков органов от павших животных наносили на обезжиренные предметные стекла, высушивали на воздухе и фиксировали не менее 15-ти минут в 96° этиловом спирте для последующей окраски и микроскопии. Окраску мазков проводили по Романовскому-Гимзе и раствором Люголя, согласно общепринятой методике (Метельская В.А. и др., 2008; Савичева А.М. и др., 2004). Учет результатов осуществляли на световом микроскопе «Микмед 5» при увеличениях ×100, ×400, ×1000. Проводили также окрашивание меченными моноклональными антителами

(тест-система CeLLabs, Австралия) для выявления антигенов *Ch. trachomatis* и *Chl. pneumoniae* в реакции ПИФ (для *Ch. trachomatis*) и НИФ (для *Chl. pneumoniae*). Учет результатов осуществляли на люминесцентном микроскопе «Місгоѕ» (Австрия) при увеличении ×600. Хламидии в препаратах выявлялись в виде характерных цитоплазматических включений, окрашенных в соответствующий методу цвет.

Серологический метод. Выявление антител к *Ch. trachomatis* и *Chl. pneumoniae* осуществляли в сыворотке крови обезьян методом ИФА. Образцы цельной крови инкубировали 1 час при температуре 37 °C, затем центрифугировали 10 мин при 1500 об/мин. Сыворотку переносили в отдельную пробирку и хранили при минус 20 °C не более двух недель. IgM-AT, IgA-AT и IgG-AT к *Ch. trachomatis* и *Chl. pneumoniae* определялись с использованием тест-систем производства НПО «Диагностические системы» (Н. Новгород) в соответствии с инструкциями по применению, прилагаемых производителем.

Культуральный метод. Соскобным материалом, полученным из УГТ, инокулировали суточную культуру клеток МсСоу, выращенную на покровных стеклах, помещенных в лунки 24-луночных планшет (Метельская В.А. и др., 2008; Савичева А.М. и др., 2004). Центрифугирование после инокуляции проводили при 1000 об/мин в течение 1 часа. Контроль развития хламидийной инфекции осуществляли путем микроскопирования клеток в инвертированном микроскопе «ЛОМО» (Россия). Покровные стекла окрашивали по Романовскому-Гимзе, раствором Люголя или меченными моноклональными антителами для выявления антигенов хламидий в реакции ПИФ и НИФ (тест-система CeL-Labs, Австралия). Титрование хламидий осуществляли стандартным методом по цитопатическому действию (Павлович С.А. 2008).

Молекулярно-генетические методы. В работе использовали основной молекулярно-генетический метод — ПЦР. Экстракцию ДНК проводили с помощью набора для выделения ДНК из мазков и соскобов «ДНК-сорб-АМ» (НИИ Эпидемиологии Роспотребнадзора, г. Москва, регистрационное удостоверение №ФСР 2007/00183). Для ПЦР амплификации ДНК *Ch. trachomatis* использовали набор реагентов «АмплиСенс *Chlamydia trachomatis*-ЕРh» (НИИ Эпидемиологии Роспотребнадзора, г. Москва, регистрационное удостоверение №ФСР 2007/00683). Анализ продуктов амплификации проводили разделением фрагментов ДНК в 2% агарозном геле. Все этапы выполнялись согласно инструкции производителя.

Для видовой мультиплексной детекции и идентификации *Ch. trachomatis* и *Chl. pneumoniae* впервые применены подобранные оригинальные универсальные праймеры на фрагмент гена 16S pPHK: для *Chlamydia trachomatis* - Ctr: 5'-TGCCGGTATGTGGGCAACC-3', для *Chlamydophila pneumoniae* Cpn: 5'-CGGAATAACGACTTGAGTTG - 3', общий реверс праймер для обоих видов R: 5'-CTCGTTTACCTGGGACGCAC-3'. Размер продукта амплифицируемого фрагмента гена 16S pPHK для *Chl. pneumoniae* - 440 пар нуклеотидов, для *Ch. trachomatis* – 334 пары нуклеотидов. Для детекции штаммов *Ch. trachomatis*, несущих плазмиду и свободных от нее, была впервые предложена следующая

оригинальная комбинация праймеров: Ctr: 5'-TGCCGGTATGTGGGCAACC-3' и R: 5'- CTCGTTTACCTGGGACGCAC-3' для амплификации фрагмента16S рРНК гена (334 пары нуклеотидов); PLf: 5'-TTCGAGGCGAGTAACGAAGA-3' и PLr: 5'-AAGCAACGCGCGCGATAGGT-3' для амплификации участка криптической плазмиды *Ch. trachomatis* (241 пара нуклеотидов).

Молекулярно-генетическое типирование штаммов *Ch. trachomatis* осуществляли методом ПЦР-ПДРФ (Koskela P. et al., 2000). Для ПДРФ-анализа наработанных в результате амплификации фрагментов использовали рестриктазы TaqI, AluI и PvuII. Расщепление ДНК проводили в буферах для рестрикции

Таблица 1. Предлагаемые оригинальные праймеры для генотипирования штаммов *Chlamydia trachomatis*.

Генотипы	Олигонуклеотидные праймеры	Размер продукта
Группа генотипов В (генотипы: B, Ba, D, Da, E, L1, L2, L2a)	BGrl f 5'-GCTTAATCAATCTGGCTGTTGA-3' BGrl r 5'-TCCAGACTTGTGGATAGTAAAC-3'	191 п.н.
Группа генотипов С (генотипы: A, C, H, I, Ja, J, K и L3)	CGr f 5'-AACTAAGTGGGCTTATTAGGAA-3' CGr r 5'-TCAAGTAGAGAGCTAGACCA-3'	107 п.н.
промежуточная группа (генотипы: F, G, Ga)	FI 5'-CTGGGATGGAACTGTATACA-3' RI 5'-TACAACTCAGGGTAGGTCAA-3'	274 п.н.
Генотип С	Comp f 5'-AAGGAAGTGTGGGATCTGACG-3' Comp r 5'-AAATATACAATGATTAGCACC-3'	221 п.н.
Генотип Е	Eomp f 5'-AGACGGATACCGCCTTATCTTG-3' Eomp r 5'-CTGGCTTGCCACTCAGGCTAAT-3'	265 п.н.
Генотип Ј	Jomp f 5'-ATATTTTGCCTAAGACTGCT-3' Jomp r 5'-TTTAGGGTTAGATAGAGAAT-3'	152 п.н.
Генотип Ја	Jaomp f 5'-TAGTGTCGGCGACGTAGCAG-3' Jaomp r 5'-TCCTAGATATTTAATGCCAT-3'	135 п.н.
Генотип Н	Fh 5'-ATCTTCTGAGTATAATACAGC-3' Rh 5'-ACGTTACGTTTAAATTGAGCA-3'	177 п.н.
Генотип F	Ff 5'-ACGAAACGTGCTGCAAATA-3' Rf 5'- TAGCCAATCATTGTAAACA-3'	321 п.н.
Генотип D	Domp f 5'-ATAATGAGAATCTAAAGACG-3' Domp r 5'-TAGAATGAGCATATTGGCAA-3'	174 п.н.
Генотип К	Komp f 5'-TGTTCTTAACACAGCTTTGGA-3' Komp r 5'-AGGTATAGATTGAGCGTATTGG-3'	150 п.н.
Генотип G	Gomp f 5'-AGAGTAGTCGCAGCGAAC-3' Gomp r 5'-ACTGTAACGGCGTATGTG-3'	146 п.н.
Генотип А	Aomp f 5'-AATACAGTATTCTGGCTTAGAT-3' Aomp r 5'-TGACTGAATGCAGGGTTGGGA-3'	57 п.н.
Генотип В	Bomp f 5'-AGTTCGAGAGTATCTTTGATGTT-3' Bomp r 5'-TCTGCGCTAGTTATCATTATCG-3'	75 п.н.

согласно инструкции для каждого фермента («Fermentas»). Данные ПДРФ-анализа в последующем сравнивали с результатами компьютерного анализа НП гена *ompA* штаммов *Ch. trachomatis* разных генотипов, представленных в NCBI GenBank (http://www.ncbi.nlm.nih.gov/Genbank/).

Типирование штаммов *Ch. trachomatis* осуществляли также с помощью ПЦР, применяя специфические сконструированные оригинальные олигонуклеотидные праймеры, ориентированные к вариабельным участкам VS1–VS4 гена *отра Ch. trachomatis* (табл. 1). Первоначально проводили амплификацию с использованием специфических праймеров к группам генотипов, далее с использованием специфических праймеров к определенному генотипу группы.

Анализ антибиотикорезистентности штаммов *Ch. trachomatis* и *Chl. pneumoniae* проводили с помощью ПЦР с использованием подобранных ориги-

нальных праймеров с целью выявления генов устойчивости к тетрациклинам (tet-M и tet-O) и макролидам (erm): Tet-f : 5'—AGYTTCCACCGAAYTCCTTTC—3' и Tet-r: : 5'-ATACACCGAGCAGGGATTTC—3' (размер продукта амплификации 470 пар нуклеотидов); Erm-f: 5'—AAGCCAYTGCGTCTGACATC—3' и Erm-r: 5'—TGGCGTGTTTCATTGCTTGA—3' (размер продукта амплификации 300 пар нуклеотидов).

Программное обеспечение в молекулярно-генетическом исследовании. Конструирование олигонуклеотидных праймеров проводили с применением биоинформационного анализа комплексом компьютерных программ: Vector NTI Advance 9.0 (PC) (http://www.invitrogen.com/site/us/en/home.html), DNASTAR, BLAST (http:// blast.ncbi.nlm.nih.gov/Blast.cgi/), и данные электронной базы NCBI Gen Bank (http://www.ncbi.nlm.nih.gov/Genbank/).

Установление филогенетического положения в семействе *Chlamydiaceae* штаммов хламидий и построение филогенетических деревьев проводили в программе MEGA 4.1, методом Neighbor Joining (объединения ближайших соседей), модель p-distance с выполнением Bootstrap Test of Phylogeny (1000 повторов) и методом Maximum Parsimony (Tamura K. et al., 2007). Степень гомологии последовательностей исследуемых штаммов с разными видами хламидий, опубликованными в NCBI GenBank, проводили в программе BLAST. Оценку эволюционного расхождения между последовательностями и стандартную ошибку (s) проводили с применением программы MEGA 4.1.

Секвенирование штаммов хламидий. Исследовались штаммы хламидий, выделенные из ЦК обезьян (бесплазмидный вариант *Ch. trachomatis*-NPL, носитель плазмиды *Ch. trachomatis*-PL), выделенный из легких обезьяны *Chl. pneumoniae*-PN, из ЦК женщины носитель плазмиды *Ch. trachomatis*-PL2, из ротоглотки человека *Chl. pneumoniae*-PN2. Референс штаммы *Chl. pneumoniae*-B и *Ch. trachomatis*-Бурхан (*Ch. trachomatis*-PL3).

Для амплификации срединного рибосомального участка генов 16S - 23S рРНК (включая домен I) и секвенирования в работе были использованы сконструированные олигонуклеотидные праймеры (Everett K. D. et al., 1997). Размер продуктов амплификации с праймерами 16SF2 и 23R, IGSIGF и 23R составляли 602 и 276 пар нуклеотидов соответственно.

Определение НП фрагментов проводили на автоматическом секвенаторе ABI Prism 3100 Genetic Analyzer (Applied Biosystems, США) и набора реагентов для секвенирования BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, США), согласно рекомендациям производителя.

Морфологический, культуральный, иммуноцитологический, молекулярно-генетические методы исследования проводились на лабораторной базе ФГУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора. Молекулярно-генетическое типирование штаммов хламидий проводилось на базе Государственного научного центра прикладной микробиологии и биотехнологии (г.Оболенск, Московской области). Иммунологические методы определения специфических противохламидийных антител в сыворотке крови в динамике

(метод парных образцов) проводились на базе лаборатории инфекционной патологии НИИ Медицинской приматологии РАМН.

Статистическая обработка полученных данных.

Математическую обработку полученных данных проводили в рамках базовой статистики с использованием метода χ^2 , среднего арифметического значения и стандартной ошибки (M±m), коэффициента ранговой корреляции Спирмена (при $r_s \ge 0.7$ связь считали сильной; при $0.5 \le r_s < 0.7$ связь являлась средней; при $r_s < 0.5$ связь считали слабой; при $r_s = 0$ - линейная связь отсутствует), применяя пакет статистических программ Microsoft Excel 2007.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

1. Установление естественного инфицирования хламидиями обезьян

При исследовании обезьян І-ІІІ групп применялись все четыре метода: ПЦР, ИФА, КМ и ЦМ (с различными методами окраски). Обследование животных группы IV проведено тремя методами диагностики: ПЦР, КМ и ЦМ. При комплексном обследовании животных **I группы** не выявлено инфицирования *Ch*. trachomatis и Chl. pneumonia. В группе II из 48 обезьян 42 особи были с выраженными клиническими признаками заболевания. Ch. trachomatis выделена в культуре клеток у 48 особей. У 36 из них хламидиоз подтвержден одновременно тремя методами (ПЦР+ИФА+цитология), у 12 обезьян – двумя методами (ПЦР+ИФА). Таким образом, совпадение результатов КМ с другими методами составило: с ПЦР-100%, с ИФА- 100%, с цитологическими исследованиями-75%, совпадение результатов ПЦР с И Φ A – 100%, с ЦМ – 75%; совпадение результатов ИФА с ЦМ - 75%. Процент выявляемости по КМ, ПЦР и ИФА составил 100%, по цитологии 75% (табл. 2, 3, рис.1). Коэффициент корреляции (r) между выраженной клиникой заболевания урогенитального тракта и результатами культурального исследования составил 1,0, ПЦР- 1,0, ИФА- 1,0, цитологического исследования- 0,74. В группе III у 25 животных в анамнезе выявлялись хронические заболевания УГТ, а у 20- хроническиие заболевания органов дыхания. При заболеваниях УГТ Ch. trachomatis выделена в КК у 12 обезьян с подтверждением только ПЦР. У 8 обезьян были положительные результаты по ПЦР и ИФА, у 5 животных положительный результат - только по ПЦР. Из 20 животных с заболеваниями органов дыхания у 19 приматов хламидиоз верифицировался только по ИФА, при отрицательных результатах других методов обследования, причем у 8 из них, специфические AT регистрировались к Ch. trachomatis, у 4 обезьян - одновременно к Ch. trachomatis и Chl. pneumoniae и у 7 обезьян - AT только к Chl. pneumoniae. У одной обезьяны был положительный результат по ИФА к Chl. pneumoniae и Ch.trachomatis, а также положительная ПЦР и КМ к Ch. trachomatis из носоглотки. У данной группы животных Chl. рпеитопіае не была верифицирована в КК и с помощью ПЦР. В результате анализа процента выявляемости хламидиозов примененными методами показано, что совпадение результатов КМ с ПЦР и ИФА составило 29%, с ЦМ совпадений не было; совпадение результатов ПЦР с И Φ A – 18%, с ЦМ – 0%, совпадение результатов ИФА с ЦМ – 0%. Процент выявляемости по КМ составил 29%, по ПЦР- 58%, по ИФА- 62%, по цитологическому исследованию- 0% (табл. 2, рис.1). Коэффициент корреляции (r) между проявлениями

Таблица 2. Показатели лабораторных тестов при острой и хронической хламидийной инфекции у приматов (93 особи).

	Группі	.T						Выявляемость	(%)			
	ı pyıllı	51		Вид хламидии		Культур	зальный м					
Клиниче-	Коли	чество п	рима-		Всего		Совпаден	ие (%)	ПЦР	ИФА	Цитология	
ская форма		тов				ПЦР	ИФА	Цитология				
Острая	48	_	2	Ch.trachomatis	100	100	100 75		100	100	75 0	
		1	2	Ch.trachomatis			0	0			0	
		1*		Ch.trachomatis Chl. pneumoni- ae	29	29	20		58	42		
Хрониче-	45	:	5	Ch.trachomatis	0	0	0			0		
ская	43		8	Ch.trachomatis				0			0	
			7	Chl. pneumoni-								
		19	4	ae Ch.trachomatis Chl. pneumoni- ae	0	0	0		0	20		

Примечания: *- у данной обезьяны *Chlamydophila pneumoniae* выявлялась только ИФА; *Chlamydia trachomatis* – ИФА, ПЦР, культуральный метод из носоглотки.

хронического течения инфекции и результатами КМ исследования составил 0,54, результатами ПЦР- 0,92, результатами ИФА- 0,65.

Таблица 3. Выраженность корреляционной связи показателей лабораторных методов с выраженностью течения хламидийной инфекции (93 особи).

Гр	уппы	Лабораторные методы обследования								
Количество наблюдае- мых	Клиническая форма	Культуральный метод	ИФА	Цитология						
48	Острая	Сильная	Сильная	Сильная IgA-AT -слабая; IgG-AT - средняя; IgM-AT – слабая	Сильная					
45	Хроническая	Средняя	Сильная	Средняя IgA-AT – отсутствует; IgG-AT - отсутствует; IgM-AT – отсутствует	Отсутствует					

Примечания: при $r_s \ge 0.7$ связь считали сильной; при $0.5 \le r_s < 0.7$ связь являлась средней; при $r_s < 0.5$ связь считали слабой; если $r_s = 0$ - линейная связь отсутствует.

Таким образом, у приматов при выраженной клинике хламидиоза наблюдается наиболее сильная корреляционная связь клинических симптомов с КМ, ПЦР и ИФА (r=1), умеренная с цитологическим методом исследования (r=0,74). При хроническом течении заболевания у приматов корреляционная связь признаков инфекции с КМ умеренная (r=0,54), с ПЦР сильная (r=0,92), с ИФА уме-

ренная (r=0,65), с цитологическим исследованием отсутствует (r=0). При диагностике хламидиоза с острым и хроническим течением инфекционного процесса в одинаковом проценте случаев выявлялись положительные результаты в КМ, ПЦР, ИФА и ЦМ.

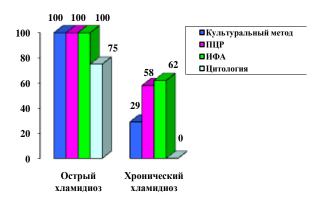


Рис. 1. Частота (процент) выявляемости положительных показателей лабораторных методов диагностики хламидиоза у приматов.

При остром течении инфекционного процесса сильная корреляционная связь клиники выявляется с КМ, ПЦР, ИФА и ЦМ. При хроническом течении сильная связь выявляется с ПЦР (показатели совпадают с таковыми при остром процессе), средняя с КМ и ИФА (показатели ниже таковых при остром процессе), с ЦМ связи не было. Чем более выраженная клиническая картина течения хламидийной инфекции, тем чаще положительные результаты регистрируются в комбинации ИФА+ПЦР + КМ + ЦМ. При течении хламидийной инфекции без выраженной симптоматики наибольший процент положительных результатов даёт ПЦР и ИФА.

При обследовании павших животных **группы IV** установлено, что одновременной постановкой ПЦР и КМ возбудители хламидиозов верифицируются в 100% случаев. Из 13 обследованных павших взрослых животных с патологией органов дыхания у 4 (30,7%) обезьян из тканей легких была выделена Ch. trachomatis, причем у 2 (50%) из них выделена Ch. trachomatis в комплексе с Chl. рпеитопіае, а у 3 (23%) животных обнаружен монопневмохламидиоз, обусловленный видом Chl. pneumoniae. Ch. trachomatis была верифицирована в плаценте у 3 (23%) самок при патологических родах. У 10 (7,7%) особей определяются Ch. trachomatis в предстательной железе, прямой кишке, в головном мозге (при менингите), что свидетельствует об организменном распространении инфекции клетками лимфоидной ткани из первичного очага поражения. Из 49 обследованных новорожденных и детенышей обезьян численность инфицированных составила 18 (36,7%) особей: мертворождение- 5 (28%), травма черепной коробки- 1 (5%), отек головного мозга- 1 (5%), пневмония- 3 (17%), пневмопатия-3 (17%), гипотрофия- 5 (28%). У 8 (44%) детенышей присутствует микст хламидийная инфекция (одновременно верифицируются Ch. trachomatis, и Chl. pneumonia), причем возбудители обнаруживаются не только в лёгких (пневмония, пневмопатия), но и в печени, селезенке, почках. У 8 (44%) детенышей регистрировалась монохламидийная инфекция, вызванная *Ch. trachomatis* и у 2 (11%) обезьян — видом *Chl. pneumoniae*, регистрирующийся во всех случаях преимущественно при патологии органов дыхания, в то время как *Ch. trachomatis* являлся причиной гипотрофии и мертворождения.

Детекция *Ch. trachomatis* и *Chl. pneumoniae* в органах различных систем у детеньшей обезьян может свидетельствовать о системном инфицировании как при внутриутробном развитии в организме матери, так и при жизни, что подтверждает экспериментальные данные литературы по инфицированию животных хламидиями (Yang Z.-P., et al. 1993; 1995;1994). Таким образом, установлена естественная распространенность и роль хламидийной инфекции в спонтанной патологии УГТ, органов дыхания, зрения низших взрослых обезьян и роль в патологии и гибели детенышей.

2. Совершенствование методов верификации хламидий у обезьян

2.1. Молекулярно-генетический анализ

Для видовой одновременной мультиплексной детекции и идентификации *Chl. pneumoniae* и *Ch. trachomatis* впервые подобраны оригинальные, универсальные праймеры для диагностической тест-системы на фрагмент гена 16S рРНК. Для детекции штаммов *Ch. trachomatis*, несущих плазмиду и свободных от нее, была впервые предложена оригинальная комбинация праймеров, позволяющая осуществлять детекцию как свободных от плазмиды штаммов *Ch. trachomatis*, так и плазмидосодержащих штаммов, что повышает процент выявляемости возбудителя, исключая ложноотрицательные результаты при использовании коммерческих тест-систем.

Изучение диагностической эффективности разработанных тест-систем проводили на 21 штаммах Ch. trachomatis и 15 штаммах Chl. pneumoniae, верифицированных в мазках-соскобах, а также в КК МсСоу общепринятыми способами. При видовой верификации 15 штаммов праймерами для видовой верификации только 5 штаммов были подтверждены как Chl. pneumoniae (рис. 2). Пять штаммов, полученных от обезьян, были верифицированы как смесь двух возбудителей Chl. pneumoniae и Ch. trachomatis, что указывало на микст-инфекцию. Пять штаммов были подтверждены как Ch. trachomatis, что говорит о наличии перекреста при выявлении хламидий меченными моноклональными антителами для выявления антигенов Ch. trachomatis и Chl. pneumoniae. При ПЦР-детекции референс штаммов Chlamydophila pneumoniae - «В» и Chlamydia trachomatis -«Бурхан» неспецифических продуктов не наблюдалось, амплификация проходила только с наработкой специфических фрагментов. При верификации плазмид у 21 штаммов Ch. trachomatis установлено наличие носительства криптической плазмиды у 10 (47,6%) штаммов. Остальные 11 (52,4%) штаммов были бесплазмидными (рис. 3). Штаммы Ch. trachomatis, полученные от обезьян с микст-пневмохламидиозом, также характеризовались как носители плазмиды. Это подтверждалось исследованиями с помощью коммерческого ПЦР-набора «АмплиСенс Chlamydia trachomatis-EPh».

Бесплазмидные штаммы не детектировались набором «АмплиСенс *Chlamydia trachomatis*-EPh» ввиду того, что основой данной системы являются

праймеры, ориентированные к участку ДНК криптической плазмиды, что подтверждается предлагаемым оригинальным набором по детекции бесплазмидных штаммов, повышая тем самым процент диагностики хламидиоза ($\chi^2=13,5$; p<0,001).

Рис. 2. Мультиплексная детекция и идентификация штаммов *Ch.tra*chomatis и Chl. *pneumoniae*.

Примечания: М - маркер длин фрагментов от 100 до 1000 пар нуклеотидов (размер 100 п.н. на рисунке не просматривается); 1, 2, 4 – смесь штаммов обоих видов Chlamydia trachomatis и Chlamydophila pneumoniae (микст - инфекция); 3, 5, 6 – штаммы Chlamydia trachomatis (моноинфекция);); КF1 – положительный контроль (Chlamydophila pneumoniae – «В»); КF2 – положительный контроль (Chlamydia trachomatis – «Бурхан»); К- - отрицательный контроль.

Рис. 3. Детекция бесплазмидных и плазмидосодержащих штаммов *Ch. trachomatis*. Примечания: М — маркер длин фрагментов от 100 до 1000 пар нуклеотидов (размер 100 п.н. на рисунке не просматривается); 1, 2, 3, 5 — плазмидосодержащие штаммы *Chlamydia trachomatis*; 4, 6 - бесплазмидные штаммы *Chlamydia trachomatis*; К1- — отрицательный контроль проведения реакции, К2+ - положительный контроль (референс штамм *Chlamydia trachomatis* — «Бурхан»).

Таким образом, созданные тест-системы мультиплексной ПЦР-детекции возбудителей хламидиозов обезьян позволяют одновременно верифицировать возбудителей у обезьян (в большем проценте случаев по сравнению с коммерческими ПЦР-тест-системами) и осуществлять дифференциацию хламидий, оценивать их вирулентность (определение носительства плазмиды). У приматов более чем в половине случаев (54%) обнаруживаются бесплазмидные штаммы *Сh. trachomatis*. Предлагаемые ПЦР-тест-системы могут применяться для прямой детекции *Chl. pneumoniae* и *Ch. trachomatis* в образцах клинического материала и в КК.

2.2. Повышение диагностической значимости культурального метода

Выделение хламидий в КК позволяет оценить жизнеспособность возбудителя, фенотипическую характеристику и вирулентность штаммов, охарактеризовать особенности роста хламидий с образованием множественных хламидийных включений, либо одного общего (характеризует экспрессию белка IncA, играющего роль в росте и развитии, Suchland R.J., et al., 2000), оценить метаболизм и уровень аккумуляции гликогена в хламидийных включениях *Ch. trachomatis*, напрямую связанных с носительством криптической плазмиды.

Для оптимизации алгоритма постановки, а также повышения информативности КМ культивирование проводилось с использованием трех клеточных линий МсСоу, Vero, Hela. Сопоставляли среду Игла с солями Хэнкса и глутамином, среду RPMI-1640 с глутамином, среду DMEM с глутамином и с 25 мМ HEPES. При формировании монослоя использовали 24-луночные планшеты с покровными стеклами, пластиковые плоскодонные пробирки с покровными стеклами или стеклянные пенициллиновые флаконы с покровными стеклами.

С использованием КМ изучили 31 штамм хламидий, выделенных от обезьян (26 штаммов *Ch. trachomatis* и 5 штаммов *Chl. pneumoniae*). Идентификацию хламидий в КК проводили с помощью различных методов окраски (рис. 4, 5, 6).

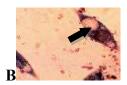
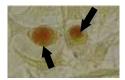



Рис. 4. Окраска по Романовскому - Гимзе хламидийных включений в КК МсСоу (В и С). Примечания: хламидийные включения на фрагментах рис. 4 В и С отмечены стрелочками.

хламидийных включений Chlamydia tracho*matis* в КК McCoy.

Примечания: хламидийные включения в КК отмечены стрелочками.

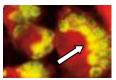
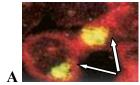


Рис. 5. Окраска раствором Люголя гликогена Рис. 6. Окраска меченными моноклональными антителами хламидийных включений в KK McCov.

Примечания: хламидийные включения в КК отмечены стрелочкой.


При титровании хламидий за инфицирующий титр принимали наивысшее разведение, при котором в 50% клеток McCoy (или Vero, или Hela) выявлялся характерный цитопатический эффект с образованием хламидийных включений.

Для исключения ложноположительных и ложноотрицательных результатов при окраске различными методами, с целью повышения информативности КМ, применяли дополнительно разработанные мультиплексные ПЦР-тестсистемы для видовой верификации Chl. pneumoniae и Ch. trachomatis, а также для верификации плазмид у штаммов Ch. trachomatis.

В культуре клеток МсСоу штаммы хламидий вызывали изменения с образованием выраженных специфических включений, в то время как в культуре Vero и Hela цитопатический эффект был невыраженным или отсутствовал. Лучшей для культивирования оказалась среда DMEM с глутамином и HEPES вследствие содержания 25 мМоль HEPES и бикарбоната натрия, обеспечивающих более высокую буферную емкость для поддержания необходимого рН длительное время. Значимых различий при культивировании в разных емкостях выявлено не было. Подобран оптимальный режим центрифугирования (1000 об/мин в течение 1 часа), при котором повышается процент инфицирования культуры. Титры Ch. trachomatis и Chl. pneumoniae в зависимости от штамма колебались от 2,0 до 5,5 lg $\text{ТЦД}_{50}/\text{мл}$.

Применение окраски по Романовскому-Гимзе выявило цитоплазматические включения в 24 (77,4%) случаях из 31. При окраске раствором Люголя детектировали 16 (61,5%) штаммов Ch. trachomatis из 26. У штаммов Chl. pneumoniae гликогенобразующая активность отсутствует. Идентификация хламидий меченными моноклональными антителами показала неоднозначный результат. При окраске штаммов хламидий наблюдалась перекрестная реакция моноклональных антител у 3 штаммов Ch. trachomatis и Chl. pneumoniae. Применение системы видовой детекции и системы детекции плазмиды методом ПЦР помогло установить наличие перекрестной реакции, в результате применения моноклональных антител, а также точно определить видовую принадлежность хламидий. Отмечено, что бесплазмидные варианты хламидий выявлялись в культуре клеток в стабильно низких титрах - 2,0-3,4 lg ТЦД₅₀/мл, а плазмидные в титрах 3,4-5,5 lg ТЦД₅₀/мл.

При культивировании штаммов *Ch. trachomatis* в КК МсСоу и при окраске моноклональными антителами были выявлены множественные внутриклеточные хламидийные включения у 11 (42,3%) из 26 штаммов (рис. 7).

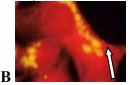


Рис. 7. Образование одного общего (А) и множественных (В) хламидийных внутриклеточных включений в КК МсСоу.

Примечания: хламидийные внутриклеточные включения штаммов *Chlamydia trachomatis* в КК показаны стрелочками. Окраска произведена меченными моноклональными антителами.

При культивировании в КК у 15 штаммов *Ch. trachomatis* экспрессия гена incA на уровне белка была сохранена, на что указывало образование общего хламидийного включения в КК. Кроме того, у плазмидных вариантов хламидийные включения имели более крупный вид, по сравнению с бесплазмидными. При детекции бесплазмидных штаммов в КК окраской по Романовскому – Гимзе и раствором Люголя результаты были отрицательными. Это связано, прежде всего, с функцией плазмиды - контролировать метаболизм и накопление гликогена в хламидийных включениях (рис. 8).

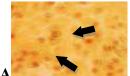


Рис. 8. Накопление гликогена в хламидийных включениях плазмидных (A) и бесплазмидных (Б) штаммов *Chlamydia trachomatis* в КК McCoy.

Примечания: гликогеновые накопления в хламидийных внутриклеточных включениях штаммов хламидий *Chlamydia trachomatis* в КК показаны стрелочками.

Фенотипических различий при культивировании в КК штаммов *Chl. pneumoniae* выявлено не было.

Таким образом, детекция хламидий окраской по Романовскому-Гимзе не позволяет дифференцировать хламидии до вида. Отсутствие хламидийных включений при данной окраске не свидетельствует об отсутствии хламидий в КК. При применении меченных моноклональных антител при детекции и идентификации хламидий в КК наблюдается появление перекрестных реакций, что приводит к некорректной оценке результатов. Использование оригинальных разработанных ПЦР-тест-систем видовой детекции *Ch. trachomatis* и *Chl. pneumoniae* и детекции плазмидных штаммов *Ch. trachomatis* в КК позволяет определить вид хламидий и исключить наличие ложноположительных и ложноотрицательных результатов, которые имеют место при применении меченных моноклональных антител, окрасок по Романовскому-Гимзе или раствором Люголя. Оптимизация условий культивирования хламидий в КК и совершенствование системы их детекции в культуре повышает диагностическую значимость и информативность КМ.

2.3. Генотипирование штаммов Chlamydia trachomatis

Генотипирование штаммов *Ch. trachomatis* осуществляли методом ПЦР-ПДРФ (Koskela P. et al., 2000) и с помощью метода ПЦР, применяя специфические сконструированные олигонуклеотидные праймеры. Генетическое типирование 26 штаммов *Ch. trachomatis*, выделенных от обезьян, методом ПДРФ-ПЦР и дальнейший сравнительный анализ длин рестрикционных фрагментов ДНК, полученных в ходе реакции, с представленными в базе данных GeneBank, характерных каждому из известных генотипов, позволило сгруппировать штаммы хламидий в две группы: 1 группа — штаммы, наиболее близкие по ПДРФ - профилям к штаммам генотипа E (42,3%); 2 группа — штаммы, наиболее близкие по ПДРФ - профилям к штаммам генотипа G (57,7%).

Генотипирование с использованием сконструированных олигонуклеотидных праймеров в реакции ПЦР осуществлялось в два этапа без привлечения ферментативных реакций в присутствии рестриктаз. Первоначально проводили ПЦР с использованием праймеров, специфических к группам генотипов. Далее, при положительной ПЦР с праймерами одной из групп, проводили ПЦР с генотипоспецифичными праймерами, тем самым определяя генотип штамма *Ch. trachomatis*. При генотипировании с помощью группоспецифичных праймеров установлено, что штаммы хламидий обезьян относятся к двум группам: группе В и промежуточной группе. Дальнейшее исследование установило, что все штаммы *Ch. trachomatis* относятся к двум основным генотипам: генотипу Е и генотипу G. Таким образом, результаты генотипирования с помощью ПДРФ – анализа и ПЦР с использованием сконструированных праймеров совпадают, что исключает необходимость применения рестрикционного анализа и сокращает дополнительные затраты на исследования.

Штаммы с генотипом Е, выделенные от обезьян, являются свободными от криптической плазмиды, штаммы с генотипом G – носителями плазмиды. По фенотипическим признакам штаммы с данными генотипами различаются способностью аккумулировать гликоген в хламидийных включениях в КК (уровень и накопление гликогена в хламидийных включениях выше у плазмидных вариантов). Кроме того, культивирование штамма генотипа Е в культуре клеток характеризуется образованием множественных внутриклеточных хламидийных включений. Это свидетельствует об отсутствии у данного генотипа экспрессии гена *incA*, играющего роль в формировании мембраны хламидийных включений. Штаммы с генотипом Е были выделены от животных без проявления выраженных клинических признаков инфекции, но имеющих в анамнезе хронические заболевания урогенитального тракта, а штаммы с генотипом G были получены от обезьян с выраженными клиническими признаками заболевания урогенитального тракта. Кроме того, генотип G у обезьян играл роль в патологии органов зрения и органов дыхания, что не было характерно для генотипа Е. Следовательно, генотип Ch. trachomatis определяет выраженность инфекционного процесса и клинические проявления заболевания.

2.4. Выявление чувствительности к антибиотикам

Анализ антибиотикорезистентности проводили у 26 штаммов *Ch. trachomatis* и у 5 штаммов *Chl. pneumoniae* с помощью ПЦР с целью выявления генов устойчивости к тетрациклинам (*tet-M u tet-O*) и макролидам (*erm*). Из 26 штаммов *Ch. trachomatis*, выделенных от обезьян, показано наличие *tet* - гена у 4 (15,4%). Три штамма с геном устойчивости относятся к генотипу Е и один к генотипу G. Присутствие *erm* – гена у штаммов *Ch.trachomatis* выявлено не было. У штаммов *Chl. pneumoniae* детерминанты устойчивости к тетрациклинам и макролидам не зафиксированы. Следовательно, отсутствие детерминант устойчивости к антибиотикам говорит о целесообразности включения антибиотиков тетрациклинов и макролидов в алгоритм терапии хламидийных инфекций у животных. Определение чувствительности к антибиотикам штаммов хламидий обезьян *Ch.trachomatis* и *Chl. pneumoniae* позволяет подобрать оптимальный алгоритм лечения.

3. Установление филогенетической топографии штаммов хламидий, выделенных от обезьян в семействе *Chlamydiaceae*

Определение таксономической топографии хламидий проводилось по сравнительному анализу 16S и 23S рРНК генов с соответствующими фрагментами геномов официально зарегистрированных и депонированных видов хламидий в электронных базах данных NCBI (США), EMBL (Великобритания), DDBJ (Япония). Для исследования были взяты два штамма хламидий от обезьян, один из которых являлся бесплазмидным вариантом (*Ch. trachomatis*-NPL), другой - носителем плазмиды (*Ch. trachomatis*-PL); один штамм *Chl. pneumoniae*-PN от обезьяны; штамм *Ch. trachomatis*-PL2, носитель плазмиды и штамм *Chl. pneumoniae*-PN2, выделенные от человека. Референс штаммы *Chl. pneumoniae*-WB» и *Ch. trachomatis*-WБурхан» (*Ch. trachomatis*-PL3).

Проведение сравнительного анализа гомологии и оценки эволюционного расхождения последовательностей 16S - 23S срединного рибосомального участка и домена I гена 23S рРНК разных видов хламидий с изучаемыми штаммами (табл. 4 и 5) выявило, что НП секвенированного фрагмента бесплазмидного штамма Ch. trachomatis-NPL имеет гомологию 99% и эволюционное расхождение между последовательностями от 0,672 до 0,690 (s=0,019) со штаммами Ch. trachomatis (A/Har-13, B/TW-5/OT, D/UW-3/CX), но наибольшую гомологию с Ch. trachomatis L2/434/BU (100%), расхождение между последовательностями равны 0 (s=0), что свидетельствует о полном сходстве последовательностей штамма NPL и L2/434/BU, несмотря на отсутствие плазмиды у штамма NPL. Это подтверждает ранее установленное сходство между штаммами как свободными от плазмиды, так и её носителями (Carlson J.H., et al. 2008). С остальными видами хламидий разность в гомологии штамма NPL составляет 15,92±7,04%, расхождение между последовательностями от 0,690 до 0,755 (s=0,018-0,019). Плазмидные штаммы Ch. trachomatis-PL, выделенный от обезьян, и Ch. trachomatis-PL2, выделенный от человека, гомологичны представителям Ch. trachomatis (плазмидные штаммы) на 98 - 99%, расхождение между последовательностями от 0,016 до 0,697 для штамма PL (s=0,005-0,019) и от 0,034 до 0,698 для штамма PL2 (s=0,008-0,019), с различием в гомологии по отношению к другим видам хламидий от $13,31\pm5,49\%$ до $13,77\pm5,97\%$, соответственно.

Таблица 4. Результаты сравнительного анализа гомологии НП 16S - 23S срединного рибосомального участка и домена I гена 23S рРНК штаммов хламидий с аналогичными последовательностями других штаммов.

Штаммы хлами-	% го	% гомологии исследуемых штаммов с известными штаммами хламидий из базы данных													
дий из базы дан-	GenB														
ных GenBank	Ch.tre		Ch.tre		Chl.p		Ch.tre	acho	Chl.p		Chl.p	neum	Ch.tracho		
	matis-	-NPL	matis	-PL	oniae		matis		oniae		oniae		matis-PL3		
	ГМ^	p**	ГМ^	p**	ГМ^	p**	ГМ^	p**	ΓM^{Λ}	p**	ГМ^	p**	ГМ^	p**	
Chl. abortus EBA	78	22	83	17	90	10	83	17	95	5	90	10	83	17	
Chl. psittaci 6BC	78	22	84	16	90	10	84	16	94	6	90	10	84	16	
Chl. psittaci NJ1	78	22	84	16	91	9	83	17	96	4	91	9	84	16	
Chl. caviae GPIC	79	21	84	16	90	10	84	16	95	5	90	10	85	15	
Chl. felis FP Baker	79	21	85	15	90	10	85	15	85	15	90	10	85	15	
Chl. pneumoniae N16	82	18	79	21	98	2	82	18	98	2	98	2	82	18	
Chl. pneumoniae TW-183	83	17	80	20	99	1	84	16	99	1	99	1	82	18	
Chl. pecorum E58	80	20	82	18	90	10	82	18	97	3	90	10	82	18	
Chl. pecorum IPA	80	20	82	18	90	10	82	18	97	3	90	10	82	18	
Ch. trachomatis A/Har13	99	1	99	1	82	18	99	1	94	6	82	18	100	0	
Ch. trachomatis B/TW-5/OT	99	1	99	1	82	18	99	1	94	6	82	18	99	1	
Ch. trachomatis D/UW-3/CX	99	1	99	1	83	17	99	1	94	6	83	17	99	1	
Ch. trachomatis L2/434/BU	100	0	98	2	83	17	98	2	94	6	83	17	98	2	
Ch. suis R22	94	6	95	5	84	16	95	5	94	6	84	16	95	5	
Ch.suis S45	94	6	95	5	83	17	95	5	93	7	84	16	95	5	
Ch. muridarum MoPn	94	6	94	6	83	17	94	6	94	6	83	17	95	5	
Ch. muridarum SFPD	94	6	94	6	83	17	94	6	94	6	83	17	95	5	
различие в гомо- логии (М±m)*		5,92 13,77 7,04 ±5,97				,73 ,78		,31 ,49		,0 ,75		,66 ,73	13,15 ±5,75		
Логии (М±111)			±3					,47	±2	,13	±3	,13	±3	,13	

Примечания: гм[^] - % гомологии штаммов; р** - % различия в гомологии штаммов; *- различие в гомологии между исследуемыми штаммами и другими видами хламидий (М±m).

Последовательность штамма *Ch. trachomatis* — PL3 отлична от *Ch. trachomatis* (A/Har-13, B/TW-5/OT, D/UW-3/CX, L2/434/BU) на 1-2%, расхождение между последовательностями от 0,002 до 0,690 (s=0,002-0,019). С представителями других видов хламидий обоих родов *Chlamydia* и *Chlamydophila* различие в гомологии данного штамма составляет 13,15±5,75%, генетические дистанции между последовательностями от 0,426 до 0,691 (s=0,019-0,021).

Таблица 5. Оценка эволюционного расхождения между НП и стандартная ошибка оценки (s) срединного фрагмента генов 16S - 23S рРНК и области 23S рРНК сегмента I *Chlamydia spp*.

п/ н	штамм	PL3	PL	PL2	NPL	MoPn	SFPD	E58	R22	L2/43 4/BU	S45	A/Ha- 13	B/TW -5/OT	D/UW 3/CX	EBA	GPIC	IPA	N16	TW- 183	6BC	PN2	NJ1	В	PN	FPBa ker
1	PL3		0,009	0,007	0,019	0,020	0,021	0,019	0,021	0,019	0,021	0,015	0,002	0,002	0,021	0,019	0,019	0,019	0,019	0,021	0,020	0,021	0,020	0,019	0,021
2	PL	0,052		0,006	0,019	0,020	0,021	0,019	0,021	0,019	0,021	0,016	0,005	0,005	0,021	0,019	0,019	0,020	0,020	0,021	0,020	0,021	0,020	0,020	0,021
3	PL2	0,033	0,019		0,019	0,021	0,021	0,019	0,021	0,019	0,021	0,016	0,008	0,008	0,021	0,019	0,019	0,019	0,019	0,021	0,019	0,021	0,019	0,019	0,021
4	NPL	0,690	0,697	0,698		0,019	0,019	0,018	0,019	0,000	0,019	0,019	0,019	0,019	0,019	0,018	0,018	0,019	0,019	0,018	0,019	0,018	0,019	0,019	0,018
5	MoPn	0,579	0,583	0,578	0,709		0,021	0,019	0,020	0,019	0,020	0,021	0,020	0,021	0,020	0,019	0,019	0,020	0,020	0,020	0,020	0,020	0,020	0,020	0,020
6	SFPD	0,534	0,545	0,534	0,719	0,440		0,020	0,021	0,019	0,021	0,021	0,021	0,021	0,021	0,020	0,020	0,019	0,019	0,021	0,019	0,021	0,019	0,019	0,021
7	E58	0,691	0,691	0,676	0,743	0,674	0,664		0,019	0,018	0,020	0,019	0,019	0,019	0,020	0,020	0,000	0,021	0,021	0,019	0,021	0,019	0,021	0,021	0,019
8	R22	0,459	0,462	0,491	0,690	0,652	0,486	0,698		0,019	0,020	0,021	0,021	0,021	0,021	0,019	0,019	0,020	0,020	0,021	0,020	0,021	0,020	0,020	0,021
9	L2/434/B	0.690	0.697	0.698	0.000	0.709	0.719	0,743	0.690		0.019	0.019	0.019	0.019	0.019	0.018	0.018	0.019	0.019	0.018	0.019	0.018	0.019	0.019	0.018
10	S45	0,690	0.429	0,698	0,000	0.638	0,719	0,743	0,090	0.709	0,019	0.021	0.021	0.021	0,019	0,018	0.020	0.019	0.019	0,018	0,019	0.021	0.019	0.019	0,018
11	A/Ha-13	0,420	0,429	0,439	0,709	0,550	0,512	0.697	0,391	0,709	0,422	0,021	0,021	0.015	0.021	0.020	0.019	0.019	0,019	0.021	0,019	0,021	0.019	0.019	0,021
12	B/TW-	0,133	0,172	0,100	0,072	0,550	0,333	0,037	0,443	0,072	0,422		0,013	0,013	0,021	0,020	0,019	0,019	0,019	0,021	0,019	0,021	0,013	0,019	0,021
	5/OT	0,002	0,017	0,034	0,691	0,579	0,534	0,691	0,460	0,691	0,428	0,155		0,002	0,021	0,019	0,019	0,019	0,019	0,021	0,020	0,021	0,020	0,019	0,021
13	D/UW3/ CX	0,003	0,016	0,036	0,690	0,578	0,536	0,691	0,459	0,690	0,426	0,157	0,002		0,021	0,019	0,019	0,019	0,019	0,021	0,020	0,021	0,020	0,019	0,021
14	EBA	0,491	0,488	0,503	0,709	0,653	0,540	0,660	0,505	0,709	0,531	0,516	0,490	0,491		0,020	0,020	0,020	0,020	0,021	0,020	0,021	0,020	0,020	0,021
15	GPIC	0,691	0,690	0,700	0,755	0,681	0,648	0,653	0,684	0,755	0,674	0,664	0,690	0,688	0,648		0,020	0,019	0,019	0,021	0,019	0,021	0,019	0,019	0,021
16	IPA	0,691	0,691	0,676	0,743	0,674	0,664	0,000	0,698	0,743	0,671	0,697	0,691	0,691	0,660	0,653		0,021	0,021	0,019	0,021	0,019	0,021	0,021	0,019
17	N16	0,674	0,671	0,676	0,707	0,660	0,707	0,550	0,671	0,707	0,678	0,679	0,674	0,674	0,624	0,703	0,550		0,016	0,021	0,014	0,021	0,014	0,016	0,021
18	TW-183	0,672	0,669	0,674	0,719	0,650	0,690	0,545	0,667	0,719	0,690	0,678	0,672	0,672	0,621	0,693	0,545	0,191		0,020	0,010	0,020	0,010	0,002	0,020
19	6BC	0,526	0,529	0,538	0,734	0,662	0,557	0,688	0,512	0,734	0,526	0,514	0,526	0,528	0,503	0,560	0,688	0,481	0,638		0,021	0,004	0,021	0,020	0,007
20	PN2	0,671	0,667	0,672	0,716	0,652	0,691	0,545	0,666	0,716	0,681	0,676	0,671	0,671	0,617	0,700	0,545	0,128	0,066	0,574		0,021	0,000	0,010	0,021
21	NJ1	0,528	0,531	0,540	0,734	0,664	0,553	0,688	0,512	0,734	0,526	0,517	0,528	0,529	0,507	0,562	0,688	0,474	0,633	0,009	0,569		0,021	0,020	0,008
22	В	0,671	0,667	0,672	0,716	0,652	0,691	0,545	0,666	0,716	0,681	0,676	0,671	0,671	0,617	0,700	0,545	0,128	0,066	0,574	0,000	0,569		0,010	0,021
23	PN	0,674	0,671	0,676	0,719	0,652	0,691	0,547	0,669	0,719	0,691	0,679	0,674	0,674	0,622	0,693	0,547	0,190	0,002	0,640	0,067	0,634	0,067		0,020
24	FPBaker	0,522	0,528	0,538	0,733	0,666	0,550	0,700	0,507	0,733	0,526	0,514	0,522	0,524	0,509	0,564	0,700	0,479	0,638	0,031	0,576	0,036	0,576	0,640	

Примечания: Результаты основаны на попарном анализе последовательностей 24 штаммов. Расчеты проводились в программе MEGA 4.1, используя метод p-distance. Числа ниже диагонали показывают генетические дистанции между последовательностями участка. Стандартная ошибка оценки эволюционного расхождения (s) получена при использовании аналитических формул в программе MEGA 4.1 и показана выше диагонали.

При оценке эволюционного расхождения НП штаммов Ch. trachomatis между собой получены следующие результаты: PL/PL2 - 0,019 (s=0,006), PL/PL3 - 0,052 (s=0,009), PL/NPL - 0,697 (s=0,019), PL2/PL3 - 0,033 (s=0,007), PL2/PL3 - 0,690 (s=0,019), PL2/PL2 - 0,698 (s=0,019). Следовательно, штамм Ch. trachomatis - PL, выделенный от обезьян, носитель плазмиды, наиболее близок к штамму, выделенному от человека PL2. В то время как бесплазмидный штамм PL более близок к референс штамму PL3.

Дополнительно оценена НП 16S - 23S срединного рибосомального участка и домена I гена 23S рРНК плазмидных и бесплазмидных штаммов *Ch. trachomatis* в сравнении для уточнения выше описанных эволюционных расхождений нуклеотидных последовательностей между этими штаммами. При сравнении штаммов *Ch. trachomatis*-PL-генотип G и *Ch. trachomatis*-NPL-генотип E выявлено различие на участке размером 483 пары нуклеотидов. Аналогичная закономерность выявляется и при сравнении *Ch. trachomatis*-PL2-генотип G с *Ch. trachomatis*-NPL-генотип E, где различие наблюдается на участке размером 197 пар нуклеотидов. При сравнении *Ch. trachomatis*-PL2 с *Ch. trachomatis*-PL выявлены единичные несовпадения (размер участка 462 пары нуклеотидов); оба штамма относятся к генотипу G.

Штаммы вида Chl. pneumoniae (PN, PN2 и В) имеют гомологию с представителем Chl. pneumoniae N16 и Chl. pneumoniae TW-183 на 98% и 99% соответственно. Эволюционное расхождение между последовательностями штаммов PN2 и B с TW-183 и N16 составляет от 0,066 до 0,128 (s=0,010-0,014); между штаммом PN и TW-183 составляет 0,002 (s=0,002) при гомологии 99%; между PN и N16 составляет 0,190 (s=0,016) при гомологии 98%. Таким образом, штаммы PN2, В и штамм PN по гомологии и эволюционному расхождению между НП близки к штамму Chl. pneumoniae TW -183. С представителями других видов штаммы PN2, В и PN имеют разность в гомологии: $PN2 - 6.0 \pm 2.75\%$; $B - 13,66\pm3,73\%$; PN $- 13,73\pm3,78\%$; эволюционное расхождение между НП от 0,545 до 0,719 (s=0,019-0,021). Оценивая эволюционное расхождение НП между штаммами Chl. pneumoniae (PN2 – штамм, выделенный от человека, PN – штамм, выделенный от обезьян, «В» – референс штамм), установили: PN2/ PN – 0.067 (s=0,010); PN2/B - 0.0 (s=0); PN/B - 0.067 (s=0,010). Наиболее близкое родство имеют и находятся на одном эволюционном уровне штамм PN2 и референс штамм «В»; но незначительное расхождение со штаммом PN все же дает представление о довольно близком сходстве всех трех изучаемых штаммов Chl. pneumoniae (выделенных от обезьян и человека).

Для выявления филогенетического родства выделенных от обезьян штаммов с выделенными от человека построена дендрограмма (рис. 9). Бесплазмидный штамм *Ch. trachomatis*-NPL относится к виду *Ch. trachomatis* и входит в один общий кластер с *Ch. trachomatis* L2/434/BU, что соответствует приведенным выше данным по гомологии штаммов (100% гомология). Штаммы PL, PL2 и PL3 объединены в один общий кластер с *Ch. trachomatis* (B/TW-5/OT, D/UW-3/CX, A/Har-13), но в разные кластеры с L2/434/BU, о чем свидетельствует эволюционное расхождение между последовательностями штаммов.

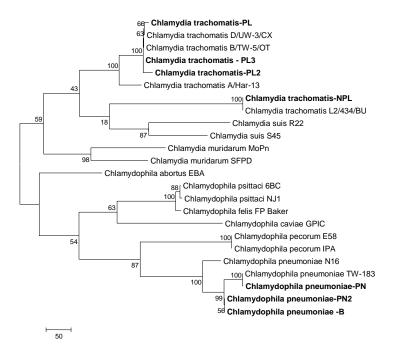


Рис. 9. Дендрограмма, полученная в результате филогенетического анализа срединного фрагмента генов 16S - 23S рРНК и области 23S рРНК сегмента I штаммов хламидий. Изучаемые штаммы *Chlamydophila pneumoniae* (PN — обезьяний штамм, PN2 — человеческий штамм и В — референс штамм) и *Chlamydia trachomatis* (PL — плазмидный штамм, выделенный от обезьян, PL2 — плазмидный штамм, выделенный от человека, PL3 — референс штамм и NPL — бесплазмидный штамм, выделенный от обезьян).

Штамм *Chl. pneumoniae* PN отнесен в один субкластер с *Chl. pneumoniae* TW-183, что говорит о том, что данный штамм относится к виду *Chl. pneumoniae*, в общий кластер с *Chl. pneumoniae*-PN2 и *Chl. pneumoniae*-B, которые в одном субкластере согласно эволюционному расхождению.

По результатам сравнительного анализа родства, эволюционного расхождения НП 16S - 23S срединного рибосомального участка и домена I 23S рРНК и определения филогенетического положения штаммов Chl. pneumoniae и Ch. trachomatis, выделенных от обезьян, впервые установлено родство данных изолятов с подобными штаммами, выделенными от человека, а также, со штаммами, НП которых представленны в электронной базе данных. Филогенетический анализ выделенных от обезьян штаммов Chl. trachomatis и Chl. pneumoniae позфилогенетическом установить ИΧ место на дереве Chlamydiaceae. Выявлено близкое эволюционное расположение изученных оригинальных видов Chlamydia и Chlamydophila с аналогичными видами из электронной базы данных. Впервые показаны различия HП 16S - 23S срединного рибосомального участка и домена I 23S рРНК плазмидосодержащих и бесплазмидных штаммов Chlamydia trachomatis, выделенных от человека и обезьян, относящихся к разным группам генотипов (группа В; промежуточная группа). Нарушение экспрессии хромосомного гена *incA*, ведущей к сбою цикла развития и жизнедеятельности хламидий, их вирулентности также можно связать с возможными изменениями в НП этого гена.

Выводы

- 1. Установлена роль *Ch. trachomatis* и *Chl. pneumoniae* в развитии спонтанной инфекционной патологии низших обезьян.
- 2. Впервые разработанная мультиплексная ПЦР при диагностике хламидийной инфекции обезьян, вызванной видом *Chl. pneumoniae* и *Ch. trachomatis*, и мультиплексная ПЦР при детекции плазмидных и бесплазмидных штаммов вида *Ch. trachomatis* позволяют одновременно не только верифицировать возбудителей хламидиозов обезьян, но и осуществлять дифференциацию хламидий, оценивать вирулентность штаммов.
- 3. Предложенные условия оптимизации культивирования хламидий и усовершенствование системы их детекции в культуре клеток повышают диагностическую значимость и информативность культурального метода исследования хламидиозов.
- 4. Штаммы *Ch. trachomatis* с генотипом Е выделены от животных без проявления клинических признаков инфекции, но имеющих в анамнезе хронические заболевания урогенитального тракта, а штаммы с генотипом G от обезьян с выраженными клиническими признаками заболевания урогенитального тракта. Генотип G у обезьян вызывает патологию органов зрения и органов дыхания. Клиническое проявление инфекционного процесса напрямую зависит от генотипических и фенотипических особенностей штаммов хламидий.
- 5. У штаммов *Ch. trachomatis*, выделенных от обезьян, выявлены гены устойчивости к тетрациклинам, но не определяются гены устойчивости к макролидам. У штаммов *Chl. pneumoniae* детерминанты устойчивости к тетрациклинам и макролидам не зафиксированы, что позволяет оптимизировать схему лечения хламидиоза обезьян.
- 6.Установлено место на филогенетическом дереве семейства *Chlamydiaceae* штаммов *Ch. trachomatis* и *Chl. pneumoniae*, выделенных от обезьян, их близкое эволюционное расположение с аналогичными видами, депонированными в электронной базе данных GenBank. Выявлено различие нуклеотидной последовательности 16S 23S срединного рибосомального участка и домена I 23S рРНК плазмидосодержащих и бесплазмидных штаммов *Ch. trachomatis*, выделенных от человека и обезьян.

Практические рекомендации

Предложенные модифицированные культуральный и молекулярногенетические методы для верификации хламидий позволяют провести объективную оценку генотипических и фенотипических свойств хламидий, а также всесторонне оценивать выраженность инфекционного процесса и прогнозировать исход хламидийной инфекции у приматов.

Спонтанная хламидийная инфекция обезьян может быть использована как модель для изучения хламидиоза человека.

Список работ, опубликованных по теме диссертации

- 1. Слободенюк В.В. Выявляемость антител к Chlamydia trachomatis и Chlamydophila pneumoniae у клинически здоровых обезьян / В.В. Слободенюк, И.М. Аршба // Идеи Пастера в борьбе с инфекциями. Материалы четвертой международной конференции. СПб, 2008. С.163.
- 2. Гречишникова О.Г. Лабораторная база диагностики хламидиоза / О.Г. Гречишникова, Е.А. Воропаева, С.С. Афанасьев, В.А. Алешкин, В.А. Метельская, А.Л. Байракова, **В.В. Слободенюк**, М.С. Афанасьев, Е.А. Егорова // Человек и лекарство: сборник материалов XV Росс. Нац. конгресса М, 2008. С.430-431.
- 3. Гречишникова О.Г. Сравнительная характеристика методов выявления Chlamydia trachomatis у человека и обезьян / О.Г. Гречишникова, **В.В. Слободенюк**, В.А. Алешкин, Е.А. Воропаева, С.С. Афанасьев, Н.В. Воложанцев, Э.А. Светоч, В.А. Метельская // Биологическая безопасность в современном мире. Материалы науч.-практ. конф. СМУиС Оболенск, 2009. С.114-117.
- 4. Гречишникова О.Г. Сравнительная характеристика методов лабораторной диагностики урогенитального хламидиоза у больных в зависимости от остроты клинических проявлений / О.Г. Гречишникова, **В.В. Слободенюк**, Е.А. Воропаева, В.А. Алешкин, С.С. Афанасьев, В.А. Метельская, А.Л. Байракова, М.С. Афанасьев, Е.А. Егорова // Человек и лекарство: сборник материалов XVI Росс. Нац. конгресса М, 2009. С.76.
- 5. Гречишникова О.Г. Фенотипическая характеристика штаммов хламидий, выделенных от человека и обезьян культуральным методом / О.Г. Гречишникова, В.В. Слободенюк, В.А. Алешкин, Б.А. Лапин, С.С. Афанасьев, В.Ф. Ликов, Е.А. Воропаева, Э.К. Джикидзе, Ю.В. Несвижский, Н.В. Воложанцев, Н.Н. Полещук, Э.А. Светоч, И.А. Дятлов, М.С. Афанасьев, О.В. Рубальский, В.А. Метельская, А.Л. Байракова, Л.В. Рубанин, Е.А. Егорова, Е.О. Рубальский, З.Б. Квачева, И.В. Евсегнеева, А.В. Караулов // Иммунопатология, Аллергология, Инфектология. −2009 − № 3. − С.44-53.
- 6. Слободенюк В.В. ПЦР-детекция и идентификация возбудителей хламидийных инфекций человека и обезьян / В.В. Слободенюк, В.А. Алешкин, Б.А. Лапин, С.С. Афанасьев, Д.В. Кокушков, О.Г. Гречишникова, Е.А. Воропаева, Э.К. Джикидзе, Ю.В. Несвижский, Н.В. Воложанцев, Э.А. Светоч, И.А. Дятлов, М.С. Афанасьев, О.В. Рубальский, В.А. Метельская, А.Л. Байракова, Е.А. Егорова, Е.О. Рубальский, И.В. Евсегнеева, А.В. Караулов // Иммунопатология, Аллергология, Инфектология. −2009 − № 3. − С.54-62.
- 7. Слободенюк В.В. Генотипирование и анализ антибиотикорезистентности штаммов *Chlamydia trachomatis*, выделенных от человека и обезьян / В.В. Слободенюк, А.В. Караулов, В.А. Алешкин, О.Г. Гречишникова, С.С. Афанасьев, Б.А. Лапин, Э.К. Джикидзе, Ю.В. Несвижский, Н.В. Воложанцев, Э.А. Светоч, И.А. Дятлов, Е.А. Воропаева, М.С. Афанасьев, В.А. Метельская, Е.А. Егорова, А.Л. Байракова // Иммунопатология, Аллергология, Инфектология. −2009 − № 4. − С.74-81.
- 8. Слободенюк В.В. Сравнительная характеристика методов верификации *Chlamydia trachomatis* у человека и обезьян / В.В. Слободенюк, В.А. Алеш-

- кин, С.С. Афанасьев, О.Г. Гречишникова, Е.А. Воропаева, М.С. Афанасьев, В.А. Метельская, А.Л. Байракова, Е.А. Егорова, Б.А. Лапин, Э.К. Джикидзе, А.В. Караулов, Ю.В. Несвижский, Д.Л. Теплый, О.В. Рубальский, Е.О. Рубальский // Естественные науки. 2009 № 1 (26). –С.65-71.
- 9. **Слободенюк В.В.** Изучение генотипов и антибиотикорезистентности штамммов Chlamydia trachomatis, выделенных от человека и обезьян / В.В. Слободенюк, А.В. Караулов, В.А. Алешкин, О.Г. Гречишникова, С.С. Афанасьев, Б.А. Лапин, Э.К. Джикидзе, Ю.В. Несвижский, Н.В. Воложанцев, Э.А. Светоч, И.А. Дятлов, Е.А. Воропаева, М.С. Афанасьев, А.В. Алешкин, В.А. Метельская, Е.А. Егорова, А.Л. Байракова // Человек и лекарство: сборник материалов XVII Росс. Нац. конгресса М, 2010. С.719.
- 10. Аршба И.М. Естественное распространение урогенитальных инфекций у обезьян в условиях неволи / И.М. Аршба, **В.В. Слободенюк** // Инфекционные болезни. Материалы II Ежегодного Всероссийского конгресса по инфекционным болезням. Москва, 2010. Т. 8. прилож. № 1. С.17-18.
- 11. **Слободенюк В.В.** Анализ антибиотикорезистентности и генотипирование штаммов *Chlamydia trachomatis* в популяции обезьян и человека / В.В. Слободенюк, О.Г. Гречишникова, И.М. Аршба // Развитие научных исследований и надзор за инфекционными заболеваниями. Материалы международной конференции. СПб, 2010. С.129.
- 12. Гречишникова О.Г. Сравнительный анализ прямых методов лабораторной диагностики урогенитального хламидиоза / О.Г. Гречишникова, В.А. Алешкин, С.С. Афанасьев, В.В. Слободенюк, А.В. Караулов, Ю.В. Несвижский, О.В. Рубальский, Е.А. Воропаева, М.С. Афанасьев, В.А. Метельская, А.Л. Байракова, Е.А. Егорова, Е.О. Рубальский // Астраханский медицинский журнал. − 2010 − Т. 5. № 2. − С.80-86.
- 13. Karaulov Alexander. Identification of Phylogenetic Position in the Chlamydiaceae Family for Chlamydia Strains Released fromMonkeys and Humans with Chlamydial Pathology / Alexander Karaulov, Vladimar Aleshkin, **Vladimir Slobodenyuk**, Olga Grechishnikova, Stanislav Afanasyev, Boris Lapin, Eteri Dzhikidze, Yuriy Nesvizhsky, Elena Voropayeva, Maxim Afanasyev, Andrei Aleshkin, Valeria Metelskaya, Ekaterina Yegorova, and Alexandra Bayrakova // Infectious Diseases in Obstetrics and Gynecology. Volume 2010, Article ID 130760, 11 pages.
- 14. **Slobodenuk V.V.** The comparative estimation of diagnostic value of laboratory methods for urogenital chlamydiosis in humans and monkeys / V.V. Slobodenuk, V.A. Aleshkin, B.A. Lapin, A.V. Karaulov, S.S. Afanasiev, O.G. Grechishnikova, E.A. Voropaeva, E.K Jikidze, U.V. Nesvizskii, M.S. Afanasiev, V.A. Metelskaia, A.L. Birakova, E.A. Egorova // FEMS 2009, 3rd Congress of European Microbiologists. Gothenburg, Sweden, June 28-Juli 2, 2009.

Патенты РФ на изобретение

- 1. Пат. № 2385945 Российская Федерация МПК С 12 Q 1/68. Способ прогнозирования манифестной или стертой формы хламидийной инфекции человека или обезьян и набор для его осуществления / В.В. Слободенюк, В.А. Алешкин, С.С.Афанасьев, Б.А. Лапин, Е.А. Воропаева, В.А. Баннов, О.М. Кострова, А.В. Караулов, Э.К. Джикидзе, Н.В. Воложанцев, И.А. Дятлов, Э.А. Светоч, О.Г. Гречишникова, В.А. Метельская, А.Л. Байракова, М.С. Афанасьев, Е.А. Егорова, О.В. Рубальский, Д.С. Афанасьев, Е.О. Рубальский, Ю.Н. Урбан, А.Н. Куракова; заявитель и патентообладатель ФГУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора.-№ 2008151548/13; заявл. 26.12.2008; зарег. во ФГУП «Роспатент» 10.04.2010.
- 2. Пат. № 2385946 Российская Федерация МПК С 12 Q 1/68. Способ диагностики хламидийной инфекции человека или обезьян и набор для его осуществления / В.В. Слободенюк, В.А. Алешкин, С.С.Афанасьев, Б.А. Лапин, Е.А. Воропаева, В.А. Баннов, О.М. Кострова, А.В. Караулов, Э.К. Джикидзе, Н.В. Воложанцев, И.А. Дятлов, Э.А. Светоч, О.Г. Гречишникова, В.А. Метельская, А.Л. Байракова, М.С. Афанасьев, Е.А. Егорова, О.В. Рубальский, Д.С. Афанасьев, Е.О. Рубальский, Ю.Н. Урбан, А.Н. Куракова; заявитель и патентообладатель ФГУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора.-№ 2008151550/13; заявл. 26.12.2008; зарег. во ФГУП «Роспатент» 10.04.2010.

Список сокращений

Ат – антитело.

ДНК – дезоксирибонуклеиновая кислота.

ИФА – иммуноферментный анализ.

КК – культура клеток.

КМ – культуральный метод.

ЛПС – липополисахарид.

ЛЦР – лигазная цепная реакция.

НИФ – реакция непрямой иммунофлуоресценции.

НП – нуклеотидная последовательность.

ПДРФ – полиморфизм длины рестрикционных фрагментов.

ПР – промежуточное тельце.

ПЦР – полимеразная цепная реакция.

РИФ - реакция прямой иммунофлуоресценции.

РНГА – реакция непрямой гемагглютинации.

РНК – рибонуклеиновая кислота.

рРНК – рибосомальная РНК.

РСК – реакция связывания комплемента.

РТ – ретикулярное тельце.

УГТ – урогенитальный тракт.

УГХ – урогенитальный хламидиоз.

ЦК – цервикальный канал.

ЦМ – цитологический метод.

ЭТ – элементарное тельце.

Ig – иммуноглобулин.

MOMP – (major outer membrane protein) – основной белок наружной мембраны.

ORF – (open reading frame) – открытая рамка считывания.